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Abstract. The paper addresses the reliability of computational analysis of

plasticity problems in light of the experimental work and its mathematical

formulation. The paper also addresses some basic constitutive laws used in

engineering and proposes one which leads to a well posed mathematical problem

and agrees well with the experimental data. The data of the experimental

project for 5454 aluminum alloy in the H32 condition for periodic and random

strains are presented. Various constitutive laws are assessed in light of

the experimental data. Outstanding problems related to the reliability of

the analysis are mentioned.

1) Introduction

The problem of the reliability of the computational analysis of solid

mechanics relies on the assumptions made. In this paper we will discuss the

question of nonlinear constitutive laws especially related to the plasticity

problem.

The study of plasticity and cyclic loading has generated a large

amount of literature. We refer here for example to [1] and an extensive list

of references there. We will be especially concerned about proposed models

describing plastic strain hardening during general cyclic loading (e.g., of

random character). These models are either empirical or are related to some

mechanical ideas. As examples we rcfer to [1-71. The models used in

practice are usually one dimensional, are tested in very limited sets of

experimental data and are extended to higher dimensional problems by some

mechanical hypotheses (e.g., v. Mises, Tresca, Hencky, etc.).

In this paper we will address the problem of the selection of the

constitutive law especially in one dimension. Also, the generalization to

higher dimension will be mentioned briefly.
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2) The one-dimensional model problem

The typical quasistatic model problem (in one-dimension) in solid

mechanics is the following: Let I = [0,11, W - [O,w) and f(x,t),

f(x,O) = 0 piecewise analytic in t and L2 (I) for every t, be given.

The problem is to find u(x.t) and o(x,t), (x,t) e I x W such that

(2.1) L(xt) = f(x,t)ax

(2.2) L-(x,t) = C(x,t)ax

(2.3) k(x,t) = A(e(x,t))

(2.4) u(O,t) = u(,t) = 0

(2.5) u(x,O) = 0

where

k(x, t) L -(x, t)
at

* 8c

(x,t) L (xt)

and A is an operator which maps any function e(t) (strain) continuous on

[0,®), e(O) = 0 into the function s(t) (stress) which is continuous on

[O,w) with s(O) = 0 and s(t ), to > 0 depends only on e(t) for

0 S t S to. (Hence we assume that A in (2.3) is x-independent). Operator

A is the constitutive law operator. One of the main problems is to have

an operator which guarantees reasonable properties of the solution of

(2.1)-(2.5) such as the existence and uniqueness. In addition the operator

has to approximate the material behavior well.

Let us now formulate a specific class of constitutive operators A

which describe the plastic behavior and guarantee that the problem

(2.1)-(2.5) is a well posed problem. We will introduce the family of
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the constitutive laws which are based on two following basic assumptions:

1) Existence of a convex yield surface.

2) The normality condition: the plastic increment is proportional to the

outward normal to the yield surface during plastic flow.

Let I be a convex set in Rn . and let F(s,a) be defined on Rx 1

so that

(2.6) F(s,a) is convex and C functional on RxV.

(2.7) F(O,0) = 0.

(2.8) There exist constants 7, r such that 0 < 7 S I- , - < r

uniformly on the set {(x,a)IF(s,a) = ZO} for some Z0 > 0.

The function F(s,a) = Z0  is the yield surface. Let us now derive the

constitutive law using the above two postulates.

Let (s,a) lie inside the yield surface, i.e., F(s,a) < ZO. Then the

material will be assumed elastic

(2.9a) s - Ee

(2.9b) = 0.

In (2.9a) E denotes the model of elasticity.

If (s,a) lies on the yield surface, i.e., F(s,a) = Z0  then we will

split the strain increment e into elastic and plastic parts

(2.10) ;E + eP

and

(2.11) = ;E = E(*- P )

Using the normality condition we get the following equation

1sJ
(2.11a) s = - -T + 2

La-C Cs l a'M s J



aF

(2.i1lb) 8& [8(aF1T (aF1 Las
(.J T)(O

where TS = ,' .F
to-aJ U C

Hence, the constitutive law under consideration is

•2 for (s,a) e
(2.12b)

E 2 fq 2 1
(2.13a) E T asJ 1 I1

OSF TOF OrFl2la J a + El J l
for (sa) e P

BF
a& UF~ aF(2.13b) OFk;)
O OF La s

where

(2.14a) = (sa)IF(s,.) < Zo or F(s,oc) = Zo  and aF 50

(2.14b) P (s,a)IF(s,a) Z0 and - >
= 1six1 s~a 20as I}

Obviously, operator A is now defined by (2.13) and (2.14) for all e(t)

which are continuous and piecewise differentiable. (We assume e(O) = a(0) =

s(0) = 0).

The family of the constitutive laws (2.12)-(2.14) based on the yield

surface F(s,a) satisfying (2.6), (2.8) will be called an admissible plastic

law or briefly an admissible law.

Now we have
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Theorem 2.1. Let A be admissible. Then the problem (2.1) has unique

solution with c(xt), o(x,t) plecewise analytic in t for every x and

L 2(1) for every t.

Theorem 2.2. Let A be admissible. Then for every mesh and linear element

the finite element solution of the problem (2.1) exists is unique and is

plecewise analytic in t. Moreover, if we let the mesh size tend to zero,

then the sequence of the finite element solution will weakly converge to the

solution of the problem (2.1).

Theorems 2.1 and 2.2 have been proven in a general form in two

dimensions (under weaker conditions than we mentioned) in (8]. See also [91.

3) One-dimensional engineering constitutive laws

In engineering the constitutive laws of plasticity are formulated in

different ways, usually in an incremental form using the notion of reversals.

Nevertheless these laws can be cast In a form of differential equation. This

form will be called the standard form.

Let us mention some of these laws.

a) Bilinear kinematic hardening law. Here we have one internal

parameter (n = 1) and

(3.1a) =E Is-k-ll < so0

for or s - k-la = s0  and s: 0

(3.1b) 0

or -s + k-la = s0  and s 0

(3.2a) E p s - k- = s and s> 0

fori - and < 0
(3.2b) &=Epk -s+k =

5



The operator A based on (3.1) and (3.2) Is independent of k. It

depends on the model of elasticity E, the model of plastic flow E and theP

yield stress so. Of course a(t) depends on k. Usually k = 1 is used.

Then, in a physical interpretation, this law keeps the shape and size of the

yield surface fixed, and the surface only shifts by the hardening. The

parameter a is the position of the center of the yield surface.

The problem is whether we can cast (3.1), (3.2) in a form (2.12)-(2.14)

with F(s,a) satisfying (2.6)-(2.8). Selecting k = 1EEpJ , (3.1), (3.2)

will coincide with (2.12)-(2.14) with

(3.3) F(s,a) = [max F (s,a),F (s,a)]
1 2

where .,.] means a smoothening operator in the neighborhood Q =

{(s,a)F 1 (S,'a) = F2 (sa)). (This smoothening is only formal to achieve C

continuity of F(s,a)). In (3.3) we have

(3.4a) 
F(Sa) = s - rEE1

E-Epj/2

(3.4b) 
F(s,a) = -s + E.E p 1 "

2
We mention that the value k = (E-E p)/EEp is the only value which allows to

cast (3.1), (3.2) into the form (2.12)-(2.14).

b) Bilinear isotropic hardening law. Here the standard form is as

follows

Isl - k-Ia < sO
(3.a) =

for or s - k-l( = s 0  and s5 0
(3.5b) a = 0

or -s - k-lI a = s and k 0
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(3.6a) =E
p -
P for s- k so0 and s > 0

(3.6b) a=Eke 0P

(3.7ba) s=Epe
Epke for -s-k-l = so  and s<0O.

Once more, the operator A here does not depend on k, while a(t) does.

When k = 1 then an analogous physical interpretation as before holds.

The yield function keeps shape and its center fixed and the hardening

increases its size. Once more the proper selection of k, namely

k = (E 1] allows to cast this law in the form (2.12), (2.14) with

(3.8) F(s,a) = [max t IS, a),'t2 (s,'a)]

(E Etj 1/2
(3.9a) F 1 (S') = s -E-Epj

(3.9b) F2 (s,'a) =-s (Ej )1/2M.

We get the operator A which coincides with the one defined by (3.5)-(3.7).

Functions F(s,a) and F(s,a) satisfy the condition (2.6)-(2.8).

c) Chaboche law [2]. This law has become recently popular and (see

Sect.4) approximates the experimental results relatively well. Although it

is formulated in (2] in a different form, it is possible to write it in the

standard form.
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(3. lOa) s = Ee

(3.10b 0e < e < e h  or
(3. lOb) * =e 0o

(3.10c) I =0 for e= eh " and e f 0

(3. lOd) h = 0
e=e ad

(3. lOe) 
= 0

(3.11a) E[c(a-X) + b(Q-R)]
c(a-x) + b(Q-R) + E e

Ec(a-x)
( c(a-x) + b(Q-R) + E e eh = e

for and

(3.ilc) Eb(Q-R)
c(a-x) + b(Q-R) + E e> 0

(3.11d) eh e

(3.1le) 2 R
E

(3.12a) s= E[c(a+x) + b(Q-R)J
c(a+X) + b(Q-R) + E

(3.12b) =Ec(a+x)

c(a+X) + b(Q-R) + E e e

for and

(3. 12c) -Eb(Q-R)
c(a+) + b(Q-R) + E< e<o

(3.12d) 
+ 2 R

(3.12e) e

with the initial conditions s(O) = X(O) = R(O) = 0,
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(3.13) eh(O) = e0 , e (0) = -e0

In [2] the law is derived using certain physical heuristic arguments. The

following coefficients are input in the Chaboche law.

a: kinematic coefficient

c: kinematic exponents

Q: isotropic coefficient

b: isotropic exponent

eo: yield strain

E: elastic modulus

In contrast to the kinematic and isotropic laws mentioned earlier, the

Chaboche law cannot be cast to the form of an admissible law as simple as

before. Nevertheless, an admissible law which is close to the Chaboche law

can be formulated. In [10] such law (with n = 2) was proposed analyzed in

detail.

d) The Babuska-Li law

We have

(3.14a) 5 = E;

(3.14b) =0 for e

(3.14c) o

9



°2

ac) 2 + .121
(3.5E p _42 2 +' E

(3. 15b) 2 2= e for (s, a,3) e P]2 (b 2  
+

a - +ac + +E

(3. 15c) s

2 2

(3a6b) ] e for (s,ac,(2) f ?

I b

(3. 16c) = 
e

(fa+a)2 +2f

where

(3. 17a) = {(s, ,3) 1 F(s,., ) < Z or

F 1 (s,a(,) = Z0 and e: 0 or

F2 (s,'ag3) = Z0  and e > O}
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(3.17b) P (sca ) F1 (s,X,) Zo and >01

(3. 17c) J1 {(S. a 1) F F2(s'a-1) = Z and ; < 0}

and Z0 = sy is initial yield stress.

Here

c 2 +b2(3.18a) FI(s. ,, =c2 acC + -_ V +s1b 4

(3.18b) F2s, )  c 2 + V a-c- + b - V'Q 13 s

and

(3.19) F(s,a,1) = [max(F 1(s, ,1), F2 (sa,)]

We see that this law has two internal parameters (n = 2) and depends on

the constants a,b,cQ,E,ZO .

It is easy to see that F defined by (3.19) satisfies (2.6) and (2.7).

The property (2.8) is more complicated and needs some relations among

coefficients of input data. For the detailed analysis of this law we refer

to [101. In [101 also other laws are proposed and analyzed in detail.

4) Experimental data

It is obvious that the constitutive law influences essentially any

computed data (for example, data computed by the finite element method).

Hence it is essential to analyze the reliability of the assumed material

behavior under realistic conditions. By this, it is meant the behavior of

commercial material (without laboratory treatment) under various random

strain conditions. The experiments related to the constitutive law have to

address the following:

a) Reproducibility of the stress response for the imputed strain.

b) Selection and quantitative assessment of an constitutive law.

11



For our experimental program we selected 5454 aluminum alloy in the H32

condition. The major alloying elements in the workhardening material are

magnesium (2.7%), manganese (0.8%) and chromium (0.12%). This particular

alloy is widely used in marine applications and is generally available in a

variety of structural shapes as sheet, plate, tube, wire, rod and bar. The

normal mechanical properties are tensile strength of 40 ksi, yield strength of

30 ksi and elongation 10%. Samples of the material were obtained from two

suppliers.

For the testing program three different classes of strain were used: a

triangular (or constant magnitude) strain functions and two different random

strain functions (using random number generator for different means and

standard deviation). For these cases seven tests were conducted with each

test having a constant mean strain level ranging from -0.6% to 0.6%. All

tests had a strain range of 1.0% and constant strain rate 0.001/sec.

Replicate tests were concluded for each strain, thus total of 84 data sets

were created. A typical data set contained approximately 40,000 data points.

For two samples of measured data o the functions V 0,
I ui

1 = T 1(t1) - o2(t1 )

T= 1 (t1 ) + 2(Y

2

were computed together with the norms

IIv1 If = max Ir1I

11 *o1 = max I TI

As an error measure of the difference the ratio

12



B= II ell W/l1 ell W

is used.

For the measure of strain reproducibility the ratio Be was computed

(i.e., two identical random strains were compared) and Be < 1.8% was

obtained.

The constants for the constitutive laws were computed for every sample

by minimization of the (relative) difference between the experimental and

computed data leading to minimal error measure. Typical results are given In

tables I and 2. Here the results are for 28 periodic and 28 random strains

for 10 loading loops. In Table I the error measure B* is reported for the

group of periodic and random strain. Here the values of the constants in the

constitutive laws are the averages of the best fit constants for every class

separately. We report the smallest (best) and largest (worst) error measure

of the difference between the samples and the law used as well as the average

error measure. In table 2 we report analogous data for the combined set of

periodic and random history (56 samples). We use the average constants of

the best fits for all (56) samples and the average of the best fit constants

for the random strain (28 samples) only. Tables 1 and 2 show clearly that

the periodic and random strain lead to different results. They also show the

importance of the selection of the values of the constants in the

constitutive laws.

Table 3 shows the results for the error measure B for one sample

(FC), the span of 10, 20, 50 and 100 loops for the random strain. The

constants in the constitutive laws are the average values of 28 samples of

random strain and 10 loops. We report the error measure of the difference In

stresses between the experiment (sample FC) (mean strain 0.006) and the

stresses computed from the law.

13



Table 1

28 CYCLIC PERIODIC LOAD HISTORY 28 RANDOM LOAD HISTORY

BEST AVERAGE WORST BEST AVERAGE WORST

ISOTROPIC 17.5678% 26.1709% 34.8327% 25.9049% 36.6324% 54.3445%

KINEMATIC 13.9703% 21.9894% 29.6227% 24.9118% 30.3313% 37.9495%

CHABOCHE 10.0580% 13.4342% 19.7299% 9.7581% 15.1567% 21.6382%

BABUSKA-LI 8.7208% 13.0558% 17.6285% 11.1595% 17.7304% 23.6274%

Table 2

ALL 28 CYCLIC PERIODIC LOAD AND 28 RANDOM LOAD HISTORY TOGETHER

MEAN OF 56 REAL DATAS MEAN OF 28 RANDOM LOAD DATAS

BEST AVERAGE WORST BEST AVERAGE WORST

ISOTROPIC 20.2992% 32.9285% 55.9337% 20.2992% 36.6324% 32.2566%

KINEMATIC 15.7110% 36.6296% 55.7103% 19.5086% 29.0444% 37.9495%

CHABOCHE 9.1939% 14.3332% 21.9578% 9.0194% 14.2968% 21.6382%

BABUSKA-LI 9.5089% 19.3730% 36.2526% 8.9993% 16.5079% 23.6274%

14



Table 3

10 LOOPS 20 LOOPS 50 LOOPS 100 LOOPS

FC - HH 18.6020% 18.1069% 17.6902% 19.0026%

FC - ISOTROPIC 41.9331% 45.4107% 44.1721% 44.1659%

FC - KINEMATIC 27.7171% 33.2344% 32.8032% 32.5333%

FC - CHABOCHE 21.4401% 21.1359% 24.1460% 26.6967%

FC - BABUSKA-LI 21.3331% 21.7366% 26.3657% 24.7862%

Table 4

10 LOOPS 20 LOOPS 50 LOOPS 100 LOOPS

GL - ES 10.2216% 10.2265% 10.6647% 10.6341%

GL - ISOTROPIC 29.1335% 31.9397% 34.6639% 36.8122%

GL - KINEMATIC 24.5334% 27.4146% 30.2475% 32.4730%

GL - CHABOCHE 12.7273% 12.4393% 11.9824% 11.5788%

GL - BABUSKA-LI 12.3832% 12.0705% 11.5576% 11.1017%
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The first row reports the error measure of the stresses for two samples

(FC and HH) (for the same random strain). This data characterize the

reproducibility of the response and are related to the uncertainty of the

material properties.

Table 4 shows analogous results for periodic strain (once more the

constants in the constitutive laws were computed from the random strain for

10 loops and 28 samples). The error measure for the difference between

two samples (GS and ES) (mean strain is -0.004) is reported too. We see once

more the difference of the responses for the random and periodic load.

Periodic load response is obviously more predictable. This clearly shows the

need to make experiments not only for periodic strain.

Figure 1 shows the difference in stresses for the sample FC and

different constitutive laws for the random strain. Figure 2 shows analogous

results foe the periodic strain (for the sample GL). Figure 3 shows the

strain-stress relation for the sample FC and random constitutive laws.

We refer to (11) for additional experimental results, statistical

analysis of the obtained data and also comparison with other laws. See [11]

also for details of the experimental procedures. Obviously unreliability

(uncertainty) in the material responses is large and hence reliability

(uncertainty) in computed (finite element) data is expected to be large too.

We will briefly address this problem in Section 6.

S) Two dimensional constitutive law

The problem is in principle the same as in one dimension. Here instead

the scalar strain and stress we have to consider strain and stress tensors.

Also the internal parameter space is larger.
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Because of complexity of the experimentation, one dimensional laws are

usually used together with additional hypothesis such as von Mises, etc. In

the case of Isotropic material we need rotational symmetry of the law. The

generalization of Babuska-Li law (see [101 preserving rotational symmetry

leads to the following function F(s,a,ft) where s is tensor with the

components s = (ss, Sy Sxy) e R a (a a2 ' '3 e R and f3 e R

F(s,a,f) = f(s- V-Va a) + f2(A ) + b 2 13
4

where f2 (s) = s2 + s2 _ s s + 3s2
x y x y xy

[4/3 2/3 0]

R = 12/3 4/3 0~

0 0 1/3

In the constitutive law, the strain e has to be in the form xx' Cyy, xy"

For details, analysis, and proof we refer to (101 where additional results

are presented.

6) Reliability of the computational analyses of plasticity problems

Reliability of the computational analyses depends on

a) Mathematical modelling restricting the characteristic features of the

physical problem, available information and aims of the analysis.

b) Correctness of the mathematical formulation guaranteeing the basic

properties as existence of the solution, etc.

c) Numerical treatment which produces an approximate solution which is

sufficiently close to the exact solution in a sense associated with the aims

of the analyses.

As has been seen In the previous section, an important characteristic of

plasticity problem is the large uncertainty In available information,
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especially in the constitutive law. In 2 and 3 dimensional problems, the

uncertaintj described by the error measure B is of order 30%-40% or more.

(In the one dimensional setting we have seen in the best cases uncertainty of

order 20-25%.)

The following problems arise:

1) How much the of uncertainty in the constitutive law is projected in

the uncertainty of the data of interest?

2) Is it possible to formulate and solve the problem to determine the

optimal bounds for the data of interest depending on uncertainties In

available information?

3) How can one formulate and sol• the problem in a stochastic sense?

Here, of course, various probability fields or at least correlations of the

experimental material properties would be needed and are practically

unavailable today.

In [8] an attempt to derive bounds depending on the uncertainties in the

constitutive law of the worst scenario was made. The idea is to assume that

all uncertainty in constitutive law is in the unknown past. The problem

is then to consider the "worst" possible past (In a set of admissible

function) leading to the largest bound of data of interest.

There are other possibilities to address: the influence of the

uncertainties analyzed by Monte Carlo methods and approaches of the type used

in optimal design, etc.

It seems that any finite element consideration in plasticity problems

using constitutive law without addressing the effects of uncertainties has

to be interpreted and accepted in a very conservative way.

The problem of the correct mathematical formulation is a crucial one.

The formulation of the (direct) plasticity problem guaranteeing well
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posedness can be achieved without any adverse effects of approximating

experimental data as has been seen in Section 4.

The numerical treatment should lead to the approximate solution with

acceptable accuracy in the sense needed for application. Today's available

weak convergence theory seems to be far from what is needed.

Summarizing we see that there are major problems and questions related

to the reliability of the computational analysis of the plasticity problems.
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